Twisted Automorphic Descent and Gan-Gross-Prasad Conjecture

Lei Zhang National University of Singapore joint with Dihua Jiang

Automorphic Forms and Arithmetic Seminar, 2021/03/26

Notation

- F is a number field and A is the ring of its adeles.
- G is a classical group defined over F:

$$G \in {\mathrm{SO}(V_n)}, \mathrm{U}(V_n), \mathrm{Sp}_{2n}, \widetilde{\mathrm{Sp}}_{2n}$$
.

- $ightharpoonup \mathfrak{g} := Lie(G)$ is the Lie algebra of G.
- $ightharpoonup \mathcal{N}(\mathfrak{g})$ is the nilpotent cone of $\mathfrak{g}(F)$ consisting of all nilpotent elements in \mathfrak{g} .

The stable adjoint orbits in $\mathcal{N}(\mathfrak{g})$ are parameterized by the certain partitions of \mathfrak{n} (or 2n).

Unipotent subgroup and its character

Example

If $G = \mathrm{SO}(3,3)$, then the stable nilpotent orbits in $\mathcal{N}(\mathfrak{g})$ are parameterized by

$$\{[5,1],[3,3],[3,1,1,1],[2,2,1,1],[1^6]\}.$$

For each F-rational nilpotent orbit $\mathcal{O}\subset\mathcal{N}(\mathfrak{g})$, one can associate

a unipotent subgroup $N_{\mathcal{O}}$ and a non-degenerate character $\psi_{\mathcal{O}}$ of $N_{\mathcal{O}}(F)\backslash N_{\mathcal{O}}(\mathbb{A})$.

(Fix a non-trivial additive character $\psi \colon F \backslash \mathbb{A} \to \mathbb{C}^{\times}$.)

Fourier coefficients of automorphic forms

For an automorphic form φ of $G(\mathbb{A})$, the Fourier coefficient of φ associated to \mathcal{O} is defined by

$$\mathcal{F}_{\mathcal{O}}(\varphi)(h) := \int_{N_{\mathcal{O}}(F) \setminus N_{\mathcal{O}}(\mathbb{A})} \varphi(nh) \psi_{\mathcal{O}}^{-1}(n) \, \mathrm{d}n.$$

Example

- 1. If \mathcal{O} is a regular nilpotent orbit (for the quasi-split groups), then $\mathcal{F}_{\mathcal{O}}(\varphi)$ is the Whittaker coefficient of φ .
- 2. Bessel-Fourier (Gelfand-Grev) coefficients for $\mathrm{SO}_{\mathfrak{n}}$ and $\mathrm{U}_{\mathfrak{n}}$: $[2\ell+1,1^{\mathfrak{n}-2\ell-1}]$
- 3. Fourier-Jacobi coefficients for Sp_{2n} , $\widetilde{\mathrm{Sp}}_{2n}$ and $\mathrm{U}_{\mathfrak{n}}$: $[2\ell,1^{\mathfrak{n}-2\ell}]$.

Example: Ginzburg-Rallis model

Let $G = \mathrm{GL}_6$ and consider the unipotent subgroup associated to [3,3]:

$$[3^2] \rightarrow \begin{pmatrix} 0 & \textit{I}_2 & 0 \\ 0 & 0 & \textit{I}_2 \\ 0 & 0 & 0 \end{pmatrix}, \quad \textit{N}_{\mathcal{O}} = \left\{ n = \begin{pmatrix} \textit{I}_2 & \textit{A} & \textit{B} \\ 0 & \textit{I}_2 & \textit{C} \\ 0 & 0 & \textit{I}_2 \end{pmatrix} : \textit{A}, \textit{B}, \textit{C} \in \textit{M}_{2 \times 2} \right\}$$

and the non-degenerated character $\psi_{\mathcal{O}}(n) = \psi(\operatorname{tr}(A+C))$.

The corresponding Levi subgroup M of $N_{\mathcal{O}}$ is $\{\operatorname{diag}(a_1, a_2, a_3) \colon a_i \in \operatorname{GL}_2\}.$

The stabilizer $M_{\mathcal{O}}$ of M acting on $\psi_{\mathcal{O}}$ is $\{\operatorname{diag}(a, a, a)\} \cong \operatorname{GL}_2$.

- ► Ginzburg–Rallis model: $(GL_6, GL_2^{\triangle} \ltimes N_{[3^2]}, \psi_{\mathcal{O}})$.
- ► The associated period integral of automorphic forms is related to $L(\frac{1}{2}, \pi, \wedge^3)$.

Partition $[2\ell + 1, 1^{n-2\ell-1}]$ of SO_n

 $ightharpoonup V_{\mathfrak{n}}$ is a quadratic space of dimension \mathfrak{n} , defined by

- $G = SO(V_n)$ is a special orthogonal group.
- ► Take a partition of n:

$$p_{\underline{\ell}} = [2\ell+1, 1^{\mathfrak{n}-2\ell-1}] \rightsquigarrow \mathcal{O}_{p_{\underline{\ell}}} \text{ (a stable nilpotent orbit)}.$$

► The associated nilpotent subgroup:

$$N_{\underline{\rho}_{\ell}} = \left\{ egin{pmatrix} z & y & x \ 0 & I_{\mathfrak{n}-2\ell} & y' \ 0 & 0 & z^* \end{pmatrix} \in \mathrm{SO}(V_{\mathfrak{n}}) \colon z \in Z_{\ell}
ight\},$$

where Z_{ℓ} is the standard maximal (upper-triangular) unipotent subgroup of GL_{ℓ} .

Rational orbits and Characters

The Levi subgroup normalizing $N_{\underline{P}_{\ell}}$ is

$$\underbrace{\mathrm{GL}_1 \times \cdots \times \mathrm{GL}_1}_{\ell} \times \mathrm{SO}(W),$$

where $W \subset V$ and $\dim(W) = \mathfrak{n} - 2\ell$.

Take an anisotropic vector $w_0 \in W$ and construct an F-rational nilpotent orbit \mathcal{O}_{ℓ,w_0} in \mathcal{O}_{p_ℓ} .

Definition $(N_{\underline{p}_{\ell}}, \psi_{\mathcal{O}_{\ell, w_0}})$

Define the character of $N_{\underline{p}_\ell}$ associated to \mathcal{O}_{ℓ,w_0}

$$\psi_{\ell,w_0}\begin{pmatrix} z & y & x \\ & I_{n-2\ell} & y' \\ & & z^* \end{pmatrix} = \psi(\underbrace{z_{1,2} + \dots + z_{\ell-1,\ell}}_{\text{sub-diagonal of } z} + \underbrace{(w_0, y_\ell)}_{\text{in } W}),$$

where y_{ℓ} is the bottom row of y and identified as a vector in W.

The stabilizer

This Levi subgroup M acts on ψ_{ℓ,w_0} via conjugation, where

$$M = \underbrace{\operatorname{GL}_1 \times \cdots \times \operatorname{GL}_1}_{\ell} \times \operatorname{SO}(W).$$

Denote by

$$G(\mathcal{O}_{\ell,w_0}) := \mathrm{SO}(W \cap w_0^{\perp}) \cong \mathrm{SO}_{\mathfrak{n}-2\ell-1}$$

the connected component of the stabilizer in $\operatorname{GL}_1^{\times \ell} \times \operatorname{SO}(W)$.

Automorphic Descent

For an automorphic form φ in π , the **Bessel-Fourier coefficients** (Gelfand-Graev) of φ are the Fourier coefficients associated to $(N_{\underline{P}_{\ell}}, \psi_{\ell, w_0})$, i.e.,

$$\mathcal{F}^{\psi_{\ell,w_0}}(\varphi)(h) := \int_{N_{\underline{P}_{\ell}}(F) \setminus N_{\underline{P}_{\ell}}(\mathbb{A})} \varphi(nh) \psi_{\ell,w_0}^{-1}(n) \, \mathrm{d}n.$$

Then $\mathcal{F}^{\psi_{\ell,w_0}}(\varphi)(h)$ is $G(\mathcal{O}_{\ell,w_0})(F)$ -invariant.

Definition

Define the ℓ -th automorphic descent $\mathcal{F}^{\psi_{\ell,w_0}}(\pi)$ of π to be the space generated by all $\mathcal{F}^{\psi_{\ell,w_0}}(\varphi)$ by varying φ in an automorphic representation π of $G(\mathbb{A})$, which is a $G(\mathcal{O}_{\ell,w_0})(\mathbb{A})$ -module.

Branching Problem

Remark

The nonvanishing of $\mathcal{F}^{\psi_{\ell,w_0}}(\varphi)$ depends on the G(F)-adjoint orbit \mathcal{O}_{ℓ,w_0} .

Branching Problem: Study the automorphic descents in terms of Arthur's endoscopic classification of automorphic representations in the discrete spectrum?

$$\underbrace{H = \mathit{G}(\mathcal{O}_{\ell,w_0}) \subset \mathit{G}}_{\mathsf{Branching}}$$

Tower property (Ginzburg-Rallis-Soudry)

 ℓ_0 is called the first occurrence index.

Bessel Period

Let π and σ be irreducible automorphic representations of $G(\mathbb{A})$ and $G(\mathcal{O}_{\ell,w_0})(\mathbb{A})$, respectively, and one of them be cuspidal.

Definition (Bessel Period)

For $\varphi_{\pi} \in \pi$ and $\varphi_{\sigma} \in \sigma$, define the Bessel period to be

$$\mathcal{B}^{\mathcal{O}_{\ell,w_0}}(\varphi_{\pi},\varphi_{\sigma}) := \int_{G(\mathcal{O}_{\ell,w_0})(F)\backslash G(\mathcal{O}_{\ell,w_0})(\mathbb{A})} \mathcal{F}^{\psi_{\ell,w_0}}(\varphi_{\pi})(h)\varphi_{\sigma}(h) dh.$$

Remark

In general, the Bessel periods can be regularized following by Jacquet-Lapid-Rogawski, Ichino-Yamana, Zydor, etc.

The spectrum of $\mathcal{F}^{\psi_{\ell_0,w_0}}(\pi)$

At the first occurrence index ℓ_0 , one has

$$\mathcal{F}^{\psi_{\ell_0,w_0}}(\pi) = \sigma_1 \oplus \sigma_2 \oplus \cdots \oplus \sigma_r \oplus \cdots$$

which is a multiplicity free decomposition.

Conjecture (Generic Summand Conjecture (Jiang-Zhang))

Assume that $\pi \in \mathcal{A}_{\operatorname{cusp}}(G)$ is of a generic Arthur parameter. If $\mathcal{F}^{\mathcal{O}_{\ell_0,w_0}}(\pi)$ is nonzero for some w_0 at the first occurrence index ℓ_0 ,

then there exists σ in $\mathcal{A}_{\operatorname{cusp}}(G(\mathcal{O}_{\ell_0,w_0}))$ such that σ is of a generic Arthur parameter and $\mathcal{B}^{\mathcal{O}_{\ell_0,w_0}}(\varphi_\pi,\varphi_\sigma)$ is nonzero.

Nonvanishing Bessel-Fourier coefficients

Application: Non-vanishing twist of central value of *L*-function.

Theorem (Jiang-Zhang)

For a generic $\pi \in \mathcal{A}_{\mathrm{cusp}}(U_{2,2})$, there exists a Hecke character χ of U_1 such that

$$L(\frac{1}{2},\pi\times\chi)\neq0.$$

Idea:

- 1. Ginzburg-Rallis-Soudry's Exchange Root Lemma: $\mathcal{F}^{\psi_{3,w_0}}(\pi) \neq 0$ for some w_0 ;
- 2. $\mathcal{B}^{\mathcal{O}_{3,w_0}}(\varphi_{\pi},\chi) \neq 0$ for some χ ;
- 3. $L(\frac{1}{2}, \pi \times \chi) \neq 0$ by one direction of global Gan-Gross-Prasad Conjecture.

Construction of automorphic representations

Goal: Given an Arthur parameter ϕ of $G(\mathbb{A})$, construct the spaces of automorphic representations in the Vogan packet $\Pi_{\phi}[G]$. Construct a concrete module of $\pi \in \mathcal{A}_{\mathrm{cusp}}(G)$:

We need to choose σ_0 such that $\mathcal{B}^{\mathcal{O}_{\ell,w_0}}(\varphi_{\pi},\varphi_{\sigma_0})\neq 0$.

Remark

- 1. Ginzburg-Rallis-Soudry: Automorphic Descent, where σ_0 is on the trivial group.
- 2. Cai-Friedberg-Ginzburg-Kaplan: Doubling Construction.
- 3. Ginzburg-Soudry: Double Descent.

Group *H*

- \triangleright V': a quadratic space of dimension 2a + m such that
 - 1. m and n have the different parity;
 - 2. the Witt index $Witt(V') \ge a$.
- $H_{2a+m} = SO(V').$
- ▶ P_a : the parabolic subgroup H_{2a+m} of Levi subgroup $GL_a \times H_m$;
- $\tau \in \mathcal{A}(\mathrm{GL}_{a}(\mathbb{A})) \text{ and } \tau = \tau_{1} \boxplus \tau_{2} \boxplus \cdots \boxplus \tau_{r}, \text{ where } \tau_{i} \in \mathcal{A}_{\mathrm{cusp}}(\mathrm{GL}_{a_{i}}), \sum_{i=1}^{r} a_{i} = a, \text{ and } \tau_{i} \not\cong \tau_{j} \text{ if } i \neq j.$
- σ : a cuspidal automorphic representation of $H_m(\mathbb{A})$.

Eisenstein series

Let $\phi_{\tau \otimes \sigma}$ be a section in $\operatorname{Ind}_{P_a(\mathbb{A})}^{H_{2a+m}(\mathbb{A})} \tau | \det |^s \otimes \sigma$ and form an Eisenstein series

$$E(\phi_{\tau\otimes\sigma},s)(h)=\sum_{\gamma\in P_{\mathsf{a}}(F)\backslash H_{2\mathsf{a}+m}(F)}\phi_{\tau\otimes\sigma}(\gamma h).$$

Lemma

Let au be as above and σ be of generic Arthur parameter. Then $E(\phi_{\tau\otimes\sigma},s)$

- 1. has a pole of order r at $s=\frac{1}{2}$ if and only if $L(s,\tau_i,\rho)$ has a pole at s=1 for all i and $L(\frac{1}{2},\tau\times\sigma)\neq 0$;
- 2. has a pole at s=1 if and only if $L(s, \tau \otimes \sigma)$ has a pole at s=1.
- $\rho = \wedge^2$ if H_{2a+m} is an even orthogonal group;
- $\rho = \text{sym}^2$ if H_{2a+m} is an odd orthogonal group.

Global zeta integral

We consider two cases:

- 1. $G = H_{2a+m}(\mathcal{O}_{\ell,w_0}) \subset H_{2a+m}$ where $\ell = a + \frac{m-n-1}{2}$;
- 2. $H_{2a+m} = G(\mathcal{O}_{\ell,w_0}) \subset G$ where $\ell = \frac{n-m-1}{2} a$.

Assumption: π is cuspidal.

Definition

Define the global zeta integral

$$\mathcal{Z}(s,\phi_{\tau\otimes\sigma},\varphi_{\pi},\psi_{\ell,\mathsf{w}_0}) = \begin{cases} \mathcal{B}^{\mathcal{O}_{\ell,\mathsf{w}_0}}(E(\phi_{\tau\otimes\sigma},s),\varphi_{\pi}), & \text{if } \mathsf{G}\subset\mathsf{H}_{2\mathsf{a}+\mathsf{m}}\\ \mathcal{B}^{\mathcal{O}_{\ell,\mathsf{w}_0}}(\varphi_{\pi},E(\phi_{\tau\otimes\sigma},s)), & \text{if } \mathsf{H}_{2\mathsf{a}+\mathsf{m}}\subset\mathsf{G}. \end{cases}$$

Key properties:

- 1. $\mathcal{Z}(s, \phi_{\tau \otimes \sigma}, \varphi_{\pi}, \psi_{\ell, w_0})$ is eulerian;
- 2. If $\mathcal{B}^{\mathcal{O}_{\ell,w_0}}(\varphi_{\pi},\varphi_{\sigma})=0$ ($\mathcal{B}^{\mathcal{O}_{\ell,w_0}}(\varphi_{\sigma},\varphi_{\pi})=0$), then $\mathcal{Z}(s,\phi_{\tau\otimes\sigma},\varphi_{\pi},\psi_{\ell,w_0})=0$.

Unramified calculation

Lemma (Jiang-Soudry-Zhang)

With the notation given as above, one has

$$\mathcal{Z}(s,\phi_{\tau\otimes\sigma},\varphi_{\pi},\psi_{\mathcal{O}_{\ell,\mathsf{w}_0}})=\prod_{\nu\in\mathcal{S}}\mathcal{Z}_{\nu}(s,\cdot)\frac{L^{\mathcal{S}}(s+\frac{1}{2},\tau\times\pi)}{L^{\mathcal{S}}(s+1,\tau\times\sigma)L^{\mathcal{S}}(2s+1,\tau,\rho)}.$$

Theorem (One direction of GGP Conjecture for tempered Arthur Parameters)

Let π and σ be cuspidal automorphic representations of $G(\mathbb{A})$ and $G(\mathcal{O}_{\ell,w_0},\mathbb{A})$, respectively. Assume that π and σ are of generic Arthur parameters.

If
$$\mathcal{B}^{\mathcal{O}_{\ell,w_0}}(\varphi_{\pi},\varphi_{\sigma})\neq 0$$
, then $L(\frac{1}{2},\pi\times\sigma)\neq 0$.

Some known cases of Gan-Gross-Prasad conjecture

Global Gan-Gross-Prasad conjecture:

Waldspurge, Ginzburg-Rallis-Soudry, Ginzburg-Rallis-Jiang, Wei Zhang, Ichino-Yamana, Gan-Ichino, Furusawa-Morimoto, Morimoto, Beuzart-Plessis-Chaudouard-Zydor, Beuzart-Plessis-Liu-W. Zhang-Zhu, etc.

Local Gan-Gross-Prasad conjecture:

Waldspurge, Moeglin-Waldspurge, Beuzart-Plessis, Gan-Ichino, Atobe-Gan, H. He, Kobayashi-Speh, Max Gurevich, Kei Yuen Chan, Hang Xue, Zhilun Luo, etc.

Twist Automorphic Descent

Theorem (Jiang-Zhang (even case))

Let τ and σ be as above. Assume that m is even.

- If $\ell>\frac{m}{2}-1$ (then $G=\mathrm{SO}_{\mathfrak{n}}$ with $\mathfrak{n}<2a+1$), then $\mathcal{F}^{\psi_{\ell,w_0}}(\mathcal{E}_{ au\otimes\sigma})=0.$
- ▶ If $\ell = \frac{m}{2} 1$, then $\mathcal{F}^{\psi_{\ell,w_0}}(\mathcal{E}_{\tau \otimes \sigma}) = \pi_1 \oplus \pi_2 \oplus \cdots \oplus \pi_r \oplus \cdots$, where π_i is of the Arthur parameter ψ_{τ} .
- ▶ If $\mathcal{F}^{\psi_{\ell,w_0}}(\mathcal{E}_{\tau\otimes\sigma})\neq 0$ at $\ell=\frac{m}{2}-1$, then $\mathcal{F}^{\psi_{\ell,w_0}}(\mathcal{E}_{\tau\otimes\sigma})=\pi$ for the unique member π in the Vogan packet $\Pi_{\psi_{\tau}}[\mathrm{SO}_{2a+1}]$.

Remarks

In the above theorem,

- $ightharpoonup \sigma$ is of a generic Arthur parameter.
- \blacktriangleright ψ_{τ} is the Arthur parameter associated to τ .
- $\mathcal{E}_{ au\otimes\sigma_0}$ is the residue of the Eisenstein series $E(\phi_{ au\otimes\sigma},s)$ at $s=rac{1}{2}.$

Remark

- ▶ Under the assumption of Generic Summand conjecture, any π of a generic Arthur parameter can be constructed via this way by choosing a suitable σ .
- ▶ If $G = SO_{2a}$, the descent $\mathcal{F}^{\psi_{\ell,w_0}}(\mathcal{E}_{\tau \otimes \sigma_0})$ might not be irreducible.
- ▶ Jiang, Baiying Liu, Zhang: the Fourier-Jacobi cases.

Non-tempered Gan-Gross-Prasad Conjecture

Assumption: $\pi \in \mathcal{A}_{\mathrm{cusp}}(G)$ is of **generic** Arthur parameter of form

$$\psi_{\pi}^{A} = (\eta_{1}, 1) \boxplus \cdots \boxplus (\eta_{s}, 1).$$

Write the global Arthur parameter of $\sigma \in \mathcal{A}_{cusp}(\mathcal{G}(\mathcal{O}_{\ell,w_0}))$ by

$$\psi_{\sigma}^{A} = (\zeta_{1}, 2b_{1} + 1) \boxplus \cdots \boxplus (\zeta_{l}, 2b_{l} + 1) \boxplus (\xi_{1}, 2a_{1}) \boxplus \cdots \boxplus (\xi_{k}, 2a_{k}).$$

Proposition (Structure of ψ_{σ}^{A} (Jiang-Zhang 2019))

If the Bessel period $\mathcal{B}^{\mathcal{O}_{\ell,w_0}}(\varphi_{\pi},\varphi_{\sigma})$ is non-zero, then the Arthur-parameter ψ_{σ}^A of σ must be of the form:

$$\psi_{\sigma}^{A} = (\zeta_{1}, 1) \boxplus \cdots \boxplus (\zeta_{l}, 1) \boxplus (\xi_{1}, 2) \boxplus \cdots \boxplus (\xi_{k}, 2),$$

and $\{\xi_1, \xi_2, \dots, \xi_k\}$ is a subset of $\{\eta_1, \eta_2, \dots, \eta_s\}$.

A-parameter structure

Assumption: $\pi \in \mathcal{A}_{\mathrm{cusp}}(G = H(\mathcal{O}_{\ell,w_0}))$ is of **generic** Arthur parameter of form

$$\psi_{\pi}^{A} = (\zeta_{1}, 1) \boxplus \cdots \boxplus (\zeta_{s}, 1)$$

Write the global Arthur parameter of $\sigma \in \mathcal{A}_{cusp}(H)$ by

$$\psi_{\sigma}^{A} = (\eta_{1}, 2a_{1} + 1) \boxplus \cdots \boxplus (\eta_{k}, 2a_{k} + 1) \boxplus (\delta_{1}, 2b_{1}) \boxplus \cdots \boxplus (\delta_{l}, 2b_{l}).$$

Proposition (Structure of ψ_{σ}^{A} (Jiang-Zhang 2019))

If the Bessel period $\mathcal{B}^{\mathcal{O}_{\ell,w_0}}(\varphi_{\sigma},\varphi_{\pi})$ is non-zero, then the global Arthur parameter ψ_{σ}^A of σ must be of the form:

$$\psi_{\sigma}^{A} = (\eta_{1}, 1) \boxplus \cdots \boxplus (\eta_{k}, 1) \boxplus (\underline{\delta_{1}}, 2) \boxplus \cdots \boxplus (\underline{\delta_{l}}, 2)$$

and $\{\delta_1, \delta_2, \dots, \delta_l\}$ is a subset of $\{\zeta_1, \zeta_2, \dots, \zeta_s\}$.

One direction of non-tempered Gan-Gross-Prasad conjecture

Assumption: π or σ is of generic Arthur-parameter.

Theorem (Non-tempered GGP (Jiang-Zhang 2020))

Assume that $\prod_{1 \leq i \leq \ell, 1 \leq j \leq k} L(\frac{1}{2}, \zeta_i \times \xi_j) \neq 0$.

If the Bessel period $\mathcal{B}^{\mathcal{O}_{\ell,w_0}}(\varphi_{\pi},\varphi_{\sigma})$ is non-zero, then

- 1. $(\psi_{\pi}^{A}, \psi_{\sigma}^{A})$ is relevant;
- 2. the local multiplicities over all places are nonzero;
- 3.

$$L(s, \psi_{\pi}^{L}, \psi_{\sigma}^{L}) = \frac{L(s + \frac{1}{2}, (\psi_{\pi}^{L})^{\vee} \times \psi_{\sigma}^{L})L(s + \frac{1}{2}, \psi_{\pi}^{L} \times (\psi_{\sigma}^{L})^{\vee})}{L(s + 1, \psi_{\pi}^{L} \times (\psi_{\pi}^{L})^{\vee})L(s + 1, \psi_{\sigma}^{L} \times (\psi_{\sigma}^{L})^{\vee})}$$

is nonzero at s = 0.

Spherical Varieties $(G, M_{\mathcal{O}} \rtimes N_{\mathcal{O}}, \psi_{\mathcal{O}})$

What about the other models arisen from Fourier coefficients $(N_{\mathcal{O}}, \psi_{\mathcal{O}})$?

	G	$M_{\mathcal{O}} \rtimes N_{\mathcal{O}}$	ρ_{X}
1	$\mathrm{GL}_4 imes \mathrm{GL}_2$	$\mathrm{GL}_2 imes \mathrm{GL}_2$	$(\wedge^2 \otimes std_2) \oplus std_4 \oplus std_4^{\vee}$
2	$\mathrm{GU_4} imes \mathrm{GU_2}$	$(\mathrm{GU}_2 \times \mathrm{GU}_2)^{\circ}$	$(\wedge^2 \otimes std_2) \oplus std_4 \oplus std_4^{\vee}$
3	$\mathrm{GSp}_6 imes \mathrm{GSp}_4$	$(\mathrm{GSp_4} \times \mathrm{GSp_2})^0$	$\mathrm{Spin}_7 \otimes \mathrm{Spin}_5$
4	GL_{6}	$\mathrm{GL}_2 \ltimes U_{[3^2]}$	\wedge^3
5	GU_{6}	$\mathrm{GU}_2 \ltimes U_{[3^2]}$	\wedge^3
6	GSp_{10}	$\mathrm{GL}_2 \ltimes U_{[5^2]}$	Spin_{11}
7	$\mathrm{GSp}_6 imes \mathrm{GL}_2$	$\mathrm{GL}_2 \ltimes U_{[3^2]}$	$\mathrm{Spin}_7 \otimes \mathit{std}_2$
8	$\mathrm{GSO_8} imes \mathrm{GL_2}$	$\mathrm{GL}_2 \ltimes U_{[4^2]}$	$\mathrm{HSpin}_8 \otimes \mathit{std}_2$
9	GSO_{12}	$\mathrm{GL}_2 \ltimes U_{[6^2]}$	HSpin_{12}
10	E ₇	$\operatorname{PGL}_2 \ltimes U$	ω_7

Relations among 10 models

Remark

The θ -correspondences for degenerate Whittaker models are given by Gomez and Zhu.

E₇ Nilpotent orbit

Ichino-Ikeda type formula

Conjecture (Wan-Zhang)

Let G and H be in the above table, π be an irreducible cuspidal automorphic representation of generic A-parameter. Then

$$\begin{split} &|\int_{Z(\mathbb{A})H(F)\backslash H(\mathbb{A})} \phi(h) \,\mathrm{d}h|^2 \\ &= \frac{1}{|S_{\phi}|} \cdot \frac{C_{H/Z_{G,H}}}{\Delta_{H/Z_{G,H}}(1)} \cdot \lim_{s \to 1} \frac{\Delta_G(s)}{L(1,\pi,Ad)} \cdot L(\frac{1}{2},\pi,\rho_X) \cdot \Pi_{v \in S} I_{H_v}^{\sharp}(\phi_v). \end{split}$$

Remark.

- 1. Sakellaridis-Venkatesh Conjecture
- 2. Refined Gan-Gross-Prasad Conjecture: Ichino-Ikeda, N. Harris, Y. Liu, H. Xue, ect.

Thank You!